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Abstract: The world is confronted with the depletion of natural resources due to their unsustainable
use and the increasing size of populations. In this context, the efficient use of by-products, residues
and wastes generated from agro-industrial and food processing opens the perspective for a wide
range of benefits. In particular, legume residues are produced yearly in very large amounts and may
represent an interesting source of plant proteins that contribute to satisfying the steadily increasing
global protein demand. Innovative biorefinery extraction cascades may also enable the recovery
of further bioactive molecules and fibers from these insufficiently tapped biomass streams. This
review article gives a summary of the potential for the valorization of legume residual streams
resulting from agro-industrial processing and more particularly for pea, green bean and chickpea
by-products/wastes. Valuable information on the annual production volumes, geographical origin
and state-of-the-art technologies for the extraction of proteins, fibers and other bioactive molecules
from this source of biomass, is exhaustively listed and discussed. Finally, promising applications,
already using the recovered fractions from pea, bean and chickpea residues for the formulation of
feed, food, cosmetic and packaging products, are listed and discussed.
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1. Introduction

In recent years, the management of agro-industrial and food processing by-products, residual
matter and waste has arisen considerable interest from farmers, food producers, retailers and consumers.
The food and food ingredient industrial production is associated with the generation of large, and
sometimes unavoidable, by-products and waste streams; about 38% of the residues wastes are generated
during food processing [1]. According to the Food and Agriculture Organization of the United Nations
(FAO), about 1.3 billion tons of food is lost or wasted per year, along the whole production chain
starting at the production stage and ending at the consumer level. Among all food commodities, fruit
and vegetables (such as legumes) are the largest food waste contributor representing 44% of the global
food waste, roots and tubers contributing by 20% and cereal by 19% [2].

Agro-industrial and food processing by-products and waste are not only a sustainability problem
with respect to environmental deterioration, but also an economic problem since they have a direct
impact on production profitability. To improve the sustainability of agro-food production, it is
essential to have a comprehensive understanding of the various sources of residual biomass generated
throughout the supply and production chains from the farm to the consumer’s table.

Several studies have focused on the quantitative estimation of residual biomass streams for
the recovery of raw materials, chemicals and energy [3–6]. In addition, the European Waste
Catalogue (EWC) [7], provided a standardized description of different by-products/wastes which were
identified and classified into several categories according to their production, transportation, handling
or treatment.

In general, agro-food by-products and wastes are considered to have little value and are often
employed as useful substrates for bioenergy/biofuel production, such as a fermentation substrate for the
production of biogas and bioethanol [8–10], or as an animal feed, since they meet the minimum quality
criteria [11]. Nonetheless, in recent years, agro-food residues valorization practices have attracted
significant attention with the aim of finding more sustainable managing systems. In particular, food
by-products/wastes represent largely under-exploited residues from which a variety of chemicals can
be derived. In fact, these streams could be used more efficiently by developing industrial biorefinery
processes aimed at the energy-efficient recovery of high-value components finding application in
several industrial markets, as well as at the concomitant production of fertilizers and/or energy [12–16]
(Figure 1).

Molecules 2019, 24, x FOR PEER REVIEW 2 of 21 

 

Keywords: agro-industrial by-products; biowaste; biomass; fibers; legumes; plant proteins 
 

1. Introduction 

In recent years, the management of agro-industrial and food processing by-products, residual 
matter and waste has arisen considerable interest from farmers, food producers, retailers and 
consumers. The food and food ingredient industrial production is associated with the generation of 
large, and sometimes unavoidable, by-products and waste streams; about 38% of the residues wastes 
are generated during food processing [1]. According to the Food and Agriculture Organization of the 
United Nations (FAO), about 1.3 billion tons of food is lost or wasted per year, along the whole 
production chain starting at the production stage and ending at the consumer level. Among all food 
commodities, fruit and vegetables (such as legumes) are the largest food waste contributor 
representing 44% of the global food waste, roots and tubers contributing by 20% and cereal by 19% 
[2].  

Agro-industrial and food processing by-products and waste are not only a sustainability 
problem with respect to environmental deterioration, but also an economic problem since they have 
a direct impact on production profitability. To improve the sustainability of agro-food production, it 
is essential to have a comprehensive understanding of the various sources of residual biomass 
generated throughout the supply and production chains from the farm to the consumer’s table.  

Several studies have focused on the quantitative estimation of residual biomass streams for the 
recovery of raw materials, chemicals and energy [3–6]. In addition, the European Waste Catalogue 
(EWC) [7], provided a standardized description of different by-products/wastes which were 
identified and classified into several categories according to their production, transportation, 
handling or treatment. 

In general, agro-food by-products and wastes are considered to have little value and are often 
employed as useful substrates for bioenergy/biofuel production, such as a fermentation substrate for 
the production of biogas and bioethanol [8–10], or as an animal feed, since they meet the minimum 
quality criteria [11]. Nonetheless, in recent years, agro-food residues valorization practices have 
attracted significant attention with the aim of finding more sustainable managing systems. In 
particular, food by-products/wastes represent largely under-exploited residues from which a variety 
of chemicals can be derived. In fact, these streams could be used more efficiently by developing 
industrial biorefinery processes aimed at the energy-efficient recovery of high-value components 
finding application in several industrial markets, as well as at the concomitant production of 
fertilizers and/or energy [12–16] (Figure 1). 

 
Figure 1. Valorization routes of residues generated by the agro-industrial food processing pipeline. 

The recovery of valuable compounds from agro-food waste was increasingly investigated and 
different approaches were considered following the Five-Stage Universal Recovery Process [17]. 
During this process, in order to effectively separate the targeted compounds from the waste matrix, 
a progressive separation procedure from the macroscopic to macromolecular, and then to the 

Figure 1. Valorization routes of residues generated by the agro-industrial food processing pipeline.

The recovery of valuable compounds from agro-food waste was increasingly investigated and
different approaches were considered following the Five-Stage Universal Recovery Process [17]. During
this process, in order to effectively separate the targeted compounds from the waste matrix, a progressive
separation procedure from the macroscopic to macromolecular, and then to the micromolecular level
is applied. Generally, five distinct stages were identified: macroscopic pre-treatment; macro- and
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micro-molecules separation; extraction; isolation and purification; product formation. Each step
can be carried out with different conventional or emerging technologies and the main advantage of
this strategy is that it can be applied for simultaneous recovery of several ingredients in different
streams [17,18].

Specifically, legume residues are rich in proteins and peptides as well as fibers that can be extracted
and further valorized in several industrial fields [11,19–22], making culture practices more profitable
and reducing human dependency on animal products. In addition, they can also be a potential source
of many other bioactive molecules (e.g., phenols, carotenoids, phytosterols and fibers) that have been
proven to exert a beneficial impact on human health [23,24].

This review article presents an overview of by-product/waste generation during legume
agro-industrial processing. These crops, and in particular peas, chickpeas and beans, represent
an extremely interesting case due to their steadily increasing production and a high annual turnover in
the European Union and worldwide given the rising demand of vegetarian/vegan consumers. Mapping
and discussion of the main opportunities related to the extraction and fraction valorization technologies
mainly of proteins, fibers and other bioactive molecules (e.g., polyphenols and carotenoids) from these
biomass streams are described. Current applications and challenges related to the recovered molecules
in the feed, food, cosmetic and packaging sectors are also reported.

2. World and European Legume Production

Worldwide and European total legume production has been increasing in the last ten years by
about 34% and 44% respectively, with soybeans, beans, peas and chickpeas being the most abundant
crops in terms of total production in 2017 [25] (Table 1).

Table 1. European production amount (in million tons, MT) of different legumes. Data from the
FAOSTAT food and agriculture database and related to 2017 [25].

Legume Type World (MT) Europe (MT)

Beans (dry) 31.41 0.62

Beans (green) 24.22 0.77

Broad Beans (dry) 4.84 0.97

Caw Peas 7.41 0.002

Chickpeas 14.78 0.13

Lentils 7.59 0.07

Lupins 1.61 0.25

Peas (dry) 16.21 2.60

Peas (green) 20.70 0.93

Soybeans 35.26 2.67

Overall, the major 2017 legume producers in Europe are France, the UK, Italy, Germany and
Spain [25]. Given their continental cold climate, France, Germany and the UK specialized in the
cultivation of more productive legume crops (soybean, peas and broad beans), while other countries,
such as Italy and Spain, cultivate large areas of a heterogeneous group of leguminous plants more
adapted to Mediterranean environments.

The pea is one of the most important nutritional crops grown across the World and Europe as it is
rich in protein content (18%–30% [26]) and can be grown in frost-hardy and cold climates. In general,
two types of peas are commonly commercialized: green peas (Pisum sativum L.) marketed as fresh or
canned, and yellow peas (Pisum sativum L. var. macrocarpon) commonly called dry peas as they are
marketed in dried form, with yellow peas dominating the global production. According to FAOSTAT
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food and agriculture database [25], the World production of green peas amounted to 20.70 million tons
(MT) in 2017, while the global production of dry peas was estimated at 16.21 MT (Table 1).

In 2017, China was, by far, the country with the largest production of green peas (61% of global
production) followed by India (26%) and the USA (1.2%) (Figure 2). Therefore, Asia is the largest green
pea producer, covering about 88.3% of global production, while Europe and America, only account for
5.5% and 3.1%, respectively (Figure 3A). In Europe, the major producers are France, Spain and the UK.
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As regards dry yellow peas, in 2017 Canada was the largest producer (4.63 MT), followed by the
Russian Federation (3.29 MT) and China (1.52 MT) (Figure 2).

Different from green peas, dry yellow peas are mainly produced in Europe (43.7%), North and
South America (33.7%) and Asia (15.9%) (Figure 3B).

The common bean (Phaseolus vulgaris L.) is usually known under different names (French bean,
kidney bean, snap bean, runner bean or string bean) and is grown and commercialized as fresh seed
(green bean) or dry seed. The common bean grows well in medium rainfall areas and it is not suited to
the humid and wet tropics.
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The total green and dry bean production reached, worldwide in 2017, a total amount of
approximately 55.6 MT (Table 1). The major producer of green beans was China, followed by
Indonesia and India, while dry beans were mostly produced by India, Myanmar and Brazil (Figure 4).
Europe mostly commercializes green beans (0.77 MT in 2017, Table 1) with Spain and Italy being the
countries mainly involved (Figure 4).
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Consequently, Asia is the continent with the highest production of both green and dry beans with
91.9% and 49.3% of total production share, respectively. Particularly for dry beans, America and Africa
also showed a relevant share in 2017 (25.2% and 21.8%, respectively [25]).

The chickpea is one of the oldest legumes and was domesticated around 3500 BC. The two main
cultivated varieties of chickpeas (Cicer arientinum L.) are the large, light-seeded Kabuli type, also called
garbanzo beans, and the small, dark-seeded Desi type.

The smooth Kabuli chickpeas are mostly farmed in European and African countries surrounding
the Mediterranean Sea and are mostly marketed for domestic use. The Desi chickpeas have a rough
appearance and a variety of colors, especially in Asian and African countries where they are also sold
as milled flour [27].

Given its high protein content (almost 40% of seed weight), the chickpea is playing a leading
role in covering the deficit in proteins of daily food ratios in Asian (especially Indian) and African
sub-Saharan populations.

Globally, India is the largest chickpea producer, accounting alone for about 67% of the total
production in 2017 (Figure 5), followed by Australia (14% of share). Europe holds only 4% of the
total chickpea production, with Spain (0.06 MT) and Italy (0.03 MT) as major 2017 producers [25].
Worldwide, the chickpea ranks fourth among legume crops, with a production of 14.78 MT (Table 1).
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Taken together, the annual combined production of peas, beans and chickpeas accounts for about
65% of global legume production [28] (Table 1).

World and European long-term market trends indicate an increasing demand for high-quality
plant proteins. In this view, the growing use of legume proteins seems unavoidable, in particular for
peas, beans and chickpeas, due to consumer preference for soy-free products. Therefore, a strong
future increment of the world production of these legume crops is foreseen [29,30].

3. Legume By-Products/Wastes Generation During the Processing Chain

Throughout the legume agro-industrial processing pipeline, large amounts of residues, by-products
and wastes are generated in particular during harvesting and field processing, when damaged legumes
are discarded. In addition, pods and other seed residues are left over from the cleaning and splitting
operations during industrial processing.

Pea, bean and chickpea processing (canning, freezing and/or drying) generates a mixture of leaves,
stems and empty pods resulting from the fresh legumes processing steps.

According to estimates from the company Conserve Italia Scarl. (Italy), one of the EU’s largest
legume producers and processors, the quantity of residues originating from the legume agro-industrial
pipeline ranges from 5% to 25% of the crop initially harvested.

As an example, the flow-chart related to the industrial process of preserved products starting from
fresh legumes is shown in Figure 6. In red are the steps corresponding to by-products/wastes production.
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Figure 6. The industrial processing scheme of fresh legumes; in red are the steps generating
by-products/wastes. Modified from Andreotti [31].

As shown in the flow chart, after the harvest, the pods are removed directly on the field and shelled
generating a large amount of agro-waste consisting of empty pods, leaves and stems. The fresh seeds
are delivered to the plant where they enter industrial processing (Figure 6). Generally, considering the
transformation processes starting from fresh seeds, by-products are sequentially generated during
the initial quality selection steps which start with a density-based separation to select the ripe grains,
regardless of the size as legume density usually increases with the degree of maturation [32]. Additional
residues are obtained during the size-based separation and the optical selection phases, as well as
during the final hand selection before the preserving process [33]. By-products generated during pea
industrial processing usually encompass processed and discarded seeds, hulls and dark or spotted
seeds (Figure 7).
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4. Legume Extraction Technologies

Currently, legume extraction and fractionation technologies have been developed mainly to
extract proteins and, to a much lesser extent, other molecules (e.g., fibers or phenols) from legume
seeds [11,34]. These technologies have been demonstrated to also apply to legume by-products and
wastes [19,35,36].

Protein extraction can be carried out either through dry or wet processing. Dry fractionation
seems to be the most promising technology for protein extraction from legume seeds and it represents a
good alternative to water extraction because it preserves protein functionality [34]. The procedure was
initially developed for wheat to separate the husk from the grain and wheat germ from endosperm [34].
It consists of fine milling to detach starch granules and protein bodies, thus allowing subsequent
separation based on the size or density of these particles by air classification, also involving electrostatic
separation processes. Dry fractionation, for separation of protein-rich and starch-rich fractions, was
applied on a commercial scale to pulses (i.e., the dry edible part of legume seeds including yellow
peas, chickpeas, lentils, beans) and cereals (in particular wheat) [34,37]. To date, only a few studies
demonstrated the valorization of legumes by-products generated after dry milling, such as the recovery
of nutrition-valuable protein-rich fractions from moth beans (Vigna aconitifolia) husks [35].

Wet processing technologies generally provide flours with a higher protein purity than dry
processing. Among these technologies, alkaline/acid, solvent and enzymatic extractions and the use of
ultrafiltration membranes were the most applied processes to legumes seeds and fractions [38–40].

Aqueous alkaline extraction followed by isoelectric precipitation is the most used technique for
the extraction of proteins from legume seeds and residues [19].

The process typically involves a milling and/or defatting pre-treatment of the legume feedstocks
to remove fiber and fat and decrease the particle size for efficient extraction. Alkaline extraction (pH
8–11) is conventionally employed to improve protein solubility and is generally followed by filtration
to remove insoluble carbohydrate material [36,41]. However, the extreme alkaline conditions may alter
the functionality and digestibility of the proteins as a result of denaturation, hydrolysis, cross-linking
and racemization, as well as the loss of essential amino acids [19].

Legume protein wet extraction can also be obtained with aqueous buffer solutions or under acidic
conditions [41]. The solubility of pulse proteins is also high under very low pH (pH < 4.0); after
filtration, the liquid extract is subjected to isoelectric precipitation, cryo-precipitation or membrane
filtration to isolate proteins [41,42]. Membrane separation takes advantage of the higher molecular
weight of proteins to separate them from other soluble components in the extract. Isolated proteins are
then washed and dried to obtain concentrates or isolates, depending on targeted protein purity [41].
This technique is also economically sustainable when applied on a large scale for the production of
proteins from different waste sources [43].

Membrane-based ultrafiltration (UF) is another important alternative method for legume protein
isolation to traditional isoelectric precipitation [41,44,45]. In comparison to the isoelectric approach,
this process can be operated under milder conditions and shows a high yield of protein recovery given
the efficient membrane retention [19,41,45].

Enzymatic hydrolysis, by using animal or plant-derived proteases under mild conditions (pH 6–8),
is also an efficient method that, after optimization of the digestion conditions, does not decrease the
functionality of extracted proteins [36,46]. Protein enzymatic extraction can also lead to the production
of peptide hydrolysates and may be useful in modulating the biological and functional properties
of food proteins. Legume proteins, such as soy [36,47,48], peas and several varieties of beans [49,50]
have already been subjected to enzymatic hydrolysis. Protein recovery by enzymatic hydrolysis from
agro-food residues, among which legumes and more particularly soybean, has also been widely studied
by using different plant or animal proteases, also in combination with carbohydrolases, to promote the
solubilization of proteins from cell wall components [19,37,51].

Organic solvent (e.g., ethanol) extraction processes have been used on an industrial scale for
solid–liquid separation of valuable molecules, such as lipids and proteins, providing final ingredients
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with good nutritional properties [19,36]. However, during the process, the proteins’ functional
properties might be altered, significantly limiting their applications, as shown for proteins extracted
from soybeans hulls [52]. Organic solvents can also be used for the extraction of the bioactive phenolic
fraction [53] and this technique can be applied to legume by-products [54].

The above-mentioned protein extraction techniques can be assisted by the application of power
ultrasound at a frequency of 20 kHz. Ultrasound-assisted extraction (UAE) is an inexpensive
and efficient technology to improve the yields achieved using conventional solid–liquid extraction
techniques. The main advantages of UAE includes the improved penetration of the solvent into
cellular material, enhancement of mass transfer due to the cavitation effect that facilitates the release of
extractable compounds [17] and the reduction in the use of hazardous solvents, classifying it as a green
technique complying with the standards set by the Environmental Protection Agency (USA) [55].

Recent research revealed that UAE intensifies the extraction of valuable components from soybeans
leading to 10% improved yields of protein, oil and solids [56]. Furthermore, the development of
an ultrasound-assisted method to extract natural antioxidants from the mung bean seed coat was
reported [57]. Lafarga et al. [58] have used acoustic energy in the acid/alkaline extraction of proteins
from Ganxet beans and observed increased yields of solubilized proteins, especially when the extraction
was performed at high sodium hydroxide concentrations (0.3–0.4 M). The high yield that can be
obtained in UAE processes is of major interest from an industrial point of view, since the technology is
an add on step to an existing process, thus needing minimal infrastructural modifications.

Microwave-assisted extraction with electromagnetic waves with frequency ranging from 300 MHz
to 300 GHz has also been studied in order to increase bioactive molecules extraction yields. The
energy for this range of frequencies directly generates heat within the sample, as a consequence of
molecule vibration, and enhances the extraction capacities of other combined methods [59]. Soluble
proteins were extracted from soybean seeds by applying a laboratory-scale MW-assisted extraction [60].
However, the application of microwaves to protein extraction from legume by-products and from
other sources is only scarcely reported.

5. Applications of Peas, Beans and Chickpeas By-Products and Wastes

A summary of the most relevant applications of peas, beans and chickpeas by-products/wastes
and/or of their extracts and of the involved bioactive molecules is reported in Table 2.

5.1. Feed

In recent years, increasing human consumption of meat has raised market demand for grain
legumes for animal feed, resulting in a massive production of residual legume biomass that needs to
be further valorized [61].

The increased interest in legume by-product/waste streams lies mainly in the possibility of
recovering high-quality proteins, which are characterized by high levels of palatability and digestibility
and could be further used as feed for all forms of livestock. This application contributes to the
reduction of cereal and soybean levels in livestock diets in intensive production systems. Recently, it
was estimated that 10% to 20% of livestock diet consists of various legumes, with a maximal inclusion
level of up to 50% (FAOSTAT data, 2017 [25]).

Considerable research on the use of legumes and their by-products as animal feed was carried out
by several groups and summarized in the reports published by FAO for the occasion of the International
Year of Pulses declared by the United Nations General Assembly in 2016 [62,63]. According to these
publications, the potential use of legumes and their by-products as feed is mainly due to two factors: 1)
the positive contribution of nutrients to the animal diet; 2) the low presence of anti-nutritional factors.
Legumes and their by-products are in fact important for animal nutrition as they are excellent sources
of amino acids, carbohydrates, fibers, minerals, vitamins, phenols and essential fatty acids [12,20,21]. In
general, legume by-products have higher dry matter digestibility, contain more energy for metabolism
and have lower fiber content than cereals. Thus, complementing animal feed with different varieties
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of legume-derived ingredients, significantly improves animal nutrition [63]. However, legumes also
contain various anti-nutritional factors (e.g., lectins, agglutinins, saponins, cyanogenic glucosides,
alkaloids and biogenic amines) [64,65], which may affect their direct use as animal feed, particularly in
monogastric animals (e.g., poultry) [63].

Nevertheless, the effects of these factors disappear or decrease when legumes are properly processed
(e.g., by roasting, soaking, cooking, autoclaving, boiling, fermentation and seed de-hulling) [64,65].

Among the different types of legume by-products, in particular empty pea pods and left-overs
after pea shelling, were deeply investigated [66,67]. These residues are rich in crude proteins (about
20.4% of dry matter (DM)), fiber (neutral detergent fiber 48.1% DM; acid detergent fiber 35.4% DM),
total soluble carbohydrates (35.6% DM), total phenolics (9.4% DM), macrominerals (e.g., 0.85% DM of
Ca, 0.38% DM of Mg) and microminerals (e.g., 237 ppm of Fe) [66]. Pea pods could serve as a highly
palatable source of nutrients for ruminants and could help to decrease the costs in animal farming [66].
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Table 2. Summary of most relevant applications of peas, beans and chickpeas byproducts/wastes and/or of their derived extracts.

Legume Feedstock Field of Application Application Bioactive Compounds Outcome Reference

Pea pods
Pulses by-products Feed Monogastric and polygastric

animal feed Proteins, fibers, minerals
Biochemical and nutritional

characterization. Impact on animal
performance.

[62,63,66,67]

Pigeon pea by-products Food High protein biscuits Proteins Chemical composition; physical and
sensory parameters [68]

Pea and broad bean pods Food Food ingredients Fibers, soluble sugars, minerals,
linoleic acid

Biochemical and nutritional
characterization; antioxidant activity [20,21]

Pea pod waste Bio-resources Bio-butanol production Cellulose/hemicellulose Potential carbon source for bio-butanol
production [69]

Pea peel waste Bio-resources Cellulase enzyme production Cellulose Potential source for cellulose production [70]

Moth bean milling residues Food Food ingredients High essential amino acids, fatty
acids, minerals.

Water and oil absorption capacities,
foaming and emulsification properties. [35]

Black gram (Vigna mungo) milling
by-products Food Food ingredients

Phenolic acids like gallic,
protocatechuic, gentisic, vanillic,
syringic, caffeic and ferulic acids

Biochemical and nutritional
characterization; α-glucosidase inhibitory

activities correlated to potential
antioxidant and anti-diabetic properties.

[54]

Red, green and black gram
by-products Food Deep-fried snacks Proteins Sensory results and shelf life studies [71]

Bean pod ash nanoparticles Automobile application Composites with bioreinforcements Nano-fibers, cellulose Increased tensile strength and hardness
values, reduced weight and energy impact [72]

Process bean waste Packaging Ecopaper for food packaging Fibers, cellulose
100% recyclable packaging paper obtained
by an eco-sustainable process and certified
for application in direct contact with food

[73]

Bean dregs Compost Compost product of high-quality Cellulose, hemicellulose Improved composting conditions and
compost quality [74].

Bean dregs Bio-resources Production of reducing sugar Sugars Efficient method for biomass wastes
liquefaction. [75]

Chickpea straw Feed Alternative forage in ruminant diet Proteins, fibers High nutritional value, dry matter
digestibility, rumen degradability [76,77]

Chickpea, mung bean, pigeon pea
hulls Food Meat additives Phenolics, flavonoids Antioxidant, antimicrobial, antinitrosant

activities [78,79]
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Table 2. Cont.

Legume Feedstock Field of Application Application Bioactive Compounds Outcome Reference

Chickpea husk Food Baking additives Fibers, polyphenols

Calcium content, antioxidant activity and
phenolic compounds content slightly

improved; increase in shelf life, rheological,
physical and sensory parameters.

[80]

Chickpea husk Textile Textile grade dye Flavonoids, tannins, terpenoids
Functional finishing features of textiles,

good ultraviolet protection, excellent
resistance against bacteria.

[81]

Chickpeas hulls Food Food additives Fibers, polyphenols Source of dietary fiber and phenolics with
antioxidant capacity [82]

Aquafaba Food Egg-white substitute in food foam
and emulsions. Proteins, carbohydrates Foaming and emulsification properties [83,84]

Aquafaba Packaging Bioplastic Proteins, carbohydrates Biodegradable bioplastic [85]
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Several by-products of chickpea cultivation and processing are used for animal feeding, including
low-grade and culled chickpeas, bran from de-hulling, crop residues (husks, straw) and chickpea
hay [76]. In particular, chickpea straw contains higher nutritive value than cereal straws (44%–46%
total digestible nutrients and 4.5%–6.5% protein, DM basis) and is more palatable than wheat straw.
Therefore, it can be used as a ruminant feed [77]. Compared with other straws, chickpea straw has
a relatively high nutritive value (e.g., metabolizable energy = 7.7 MJ/kg DM for chickpea straw vs.
5.6 MJ/kg DM for wheat) [77,86], but lower than that of other legume straw such as broad bean (Vicia
faba L.), lentil (Lens culinaris Medik) or pea [86].

Dry matter digestibility and rumen degradability of chickpea straw were 10% to 42% higher
than in cereal straws, indicating that they can be used as an alternative forage in ruminant diets [77].
However, even though its nutritional characteristics are similar to those of other important grain
legumes such as pea, chickpea is less used in animal feeding [77].

5.2. Food

Nowadays, there has been a growing interest in the food industry towards the potential utilization
of legume by-products, mainly related to the presence of high amounts of proteins which could be
exploited to create meat analogs for vegetarian/vegan diets, and more generally in the formulation of
functional food for human consumption [87,88]. Vegetarian and vegan diets have in fact become more
and more popular and many consumers see themselves as partial vegetarians and greatly restrict their
consumption of animal products. This has led to an increase in the demand for alternative sources of
food proteins mainly coming from legumes and their processed products. Proteins enhance the feeling
of satiety, can contribute to lowering blood pressure and have a favorable effect on lipid metabolism.
For this reason, legume flours and extracts are important sources of plant protein [89]. Legume protein
flours, concentrates and isolates can be incorporated into various types of foods (e.g., high protein
pasta, crisps, burger patties, nuggets, beverages, baby food, imitation cheese, whipped toppings, soy
milk and baked products) to increase their nutritional value and/or to provide specific and desirable
functional or technological properties [41,88,90–92]. Flours from different types of legume by-products
(Cajanus cajan, Phaseolus aureus Roxb., Phaseolus mungo Roxb.) have been produced and tested to
formulate deep-fried snacks, which were evaluated for their physico-chemical, shelf-life and sensory
properties [71]. In addition, flours of pigeon pea by-products have been used to produce biscuits with
high protein and 10% lower wheat flower contents [68].

Legume proteins, also extracted from legume residual feedstocks, have been hydrolyzed using
economically valuable techniques (e.g., physical, chemical or enzymatic digestion) to produce bioactive
peptides [49,51,93]. These peptides showed several potential biological activities, such as angiotensin
converting enzyme (ACE)-inhibitory and antioxidant activities [49,93], making them interesting as
functional ingredients for food or cosmetic applications.

In recent years, beside vegan and vegetarian products, also the demand of functional food
fortified with plant-derived bioactive compounds is progressively increasing. New functional food
demand is driven by consumers that are highly aware of the close relationship between nutrition
and health and want to include food added with health-promoting ingredients (e.g., fibers and fatty
acids) in their diets. Several studies have therefore focused on the development of new ingredients
with improved nutritional profiles also recovered from agro-industrial by-products [94]. Among
these, legume residues are rich in dietary fibers and, in particular, broad beans and pea pods were
studied as a potential nutritionally valuable and significant source of dietary fiber (above 50% of
total weight) for human food consumption [20,21]. Chickpea husks have been studied as a source of
dietary fibers showing that their addition to baked products, such as white bread, could produce health
benefits [80]. Analogously, chickpea hulls also proved to be a good alternative source of dietary fibers
and antioxidant phenolics exploitable as ingredients in functional food products. In addition, a wide
variety of polyphenols and other molecules (e.g., peptides and lectins) with antioxidant, antimicrobial
and other beneficial activities have been extracted from legume residues [21,53,95]. These compounds
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have the potential to answer the needs of the food industry by introducing alternative antimicrobial
compounds from natural sources and by formulating new green-labeled products. For example, the
antibacterial and antifungal properties of chickpeas and peas were studied in relation to their protein
and peptide profiles [95].

A great variety of natural sources have been investigated for their antioxidant potential in meat and
meat products [96]. Natural antioxidants have a higher consumer acceptance and therefore show a larger
range of potential applications in the meat industry, with respect to synthetic molecules [78]. Among
many others, also legume phenols, such as some flavonoids showing antioxidant and anti-nitrosant
activities coming from chickpea, pigeon pea and mung bean [79], may find an application as additives
in meat food products where they take part in the prevention of meat oxidation, which is an important
cause for off-flavoring [78]. In addition, peroxidation of meat fats or N nitrosation, were found among
the main causes of statistically significant dose-response relationship between colon-rectal cancer and
the consumption of red meat [97]. To this extent, regarding legume extract application, soy protein
hydrolysates were added to cooked ground beef with the aim of reducing lipid oxidation [98]. As
excess fat may be a pro-cancer factor, fat reduction by replacement with soluble fibers and/or with
other protein-rich ingredients (such as chickpea protein-rich flour) seems to be one of the solutions to
make healthier processed meats with better nutritional profiles, but without modifying texture and
flavor [99].

A particular and interesting legume by-product is aquafaba, the viscous water resulting from
chickpea seeds processing, including both the liquid from canned legumes as well as the boiling water
from industrial production [83]. It is composed of carbohydrates, proteins, and other soluble plant
solids that have migrated from the seeds to the water during the cooking process. The combination
of the previous compounds provides this liquid with a wide spectrum of emulsifying, foaming,
gelatinizing and thickening properties. Aquafaba is currently used to a limited extent by the food
industry, mainly as a substitute for egg white in mayonnaise, dairy products, baked goods (such
as meringues and sponge cakes), vegetable snacks, salad dressings and other foods, whereas it has
become a popular alternative among vegans [83,84].

5.3. Cosmetics

There are many commercial applications of legume extracts for cosmetics but none of them are
derived from by-products/wastes. Dried seed legume protein fractions and pea peptide hydrolysates
are used as skin moisturizers and soothing/anti-itching actives [100,101]. Legume proteins also showed
properties for reducing body perspiration and high fiber pea flour was used as an emulsifier [102]. A
commercially available pea extract under the trade name ACTIWHITE PW LS 9860 (by BASF, Germany)
is currently used as a skin whitening agent [103].

According to previous reported studies, bioactive protein/peptides, fibers, polyphenols and other
molecules could be successfully extracted from legume processing residues [20,21,67] in view of
their application as cosmetic ingredients, similarly to phenolic extracts obtained from other types of
agro-waste residues [104].

5.4. Packaging

Recent trends aim at recovering valuable molecules from legume agro-waste and by-products to
be used in the formulation of polymeric materials with new functionalities [105,106]. The packaging
sector is looking for solutions to modify bio-based and biodegradable polymers in order to meet
challenging requirements for food and cosmetics preservation while maintaining their sustainability
and biodegradability. One of the main goals is to reduce the consumption of highly expensive
bio-based and compostable or biodegradable polymers (such as polyhydroxyalkanoates (PHA),
polybutylene succinate (PBS), polycaprolactone (PCL), polylactic acid (PLA)) as well as impart to the
biodegradable materials the same properties of the fossil-based ones. In this context, the formulation
of materials including residues and/or bioactive molecules extracted from natural wastes/by-products
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was promoted [107]. Technologies and procedures applied to recover proteins and active compounds
from legume and other plant feedstocks, also generate a considerable amount of fiber and residual
biomass. These can then be valorized for the production of bio-composite materials obtained by
mixing a biopolymeric matrix (e.g., PHA, PLA, PBS and PCL) and a defined percentage of reinforcing
bio-fillers, such as plant-derived fibers. As natural fibers are renewable, biodegradable, available in
large amounts and cheap, they are particularly interesting for the preparation of polymer composites
where they can improve the mechanical properties of the matrices and reduce the amount of expensive
bio-polymeric matrix present in the final material [108,109]. The residues remaining after protein
extraction from legumes have been exploited for the preparation of bio-composites together with
polyhydroxyalkanoates (PHAs) as a biodegradable polymeric matrix [110]. This approach enabled the
production of rigid packaging items with good mechanical properties and opened perspectives for
a packaging market based on new sustainable solutions. In addition, the production of aluminum
matrix composites (AMCs) using bean pod ash nanoparticles was studied for automobile application,
giving good and promising results [72]. In fact, bean pod ashes can be considered as a promising
reinforcement for the production of biocomposites, due to their low density, low cost and availability
in large quantities as agricultural wastes.

Aromatic amino acids (such as tryptophan and tyrosine) obtained from the hydrolysis of a
protein-rich agricultural waste can also be utilized to impart high UV resistance and UV-shielding
features to a polymeric matrix [111]. However, embedding these molecules directly into a polymeric
matrix has several drawbacks since they can react with the polymer back-bone giving rise to polymer
degradation, or they can leach out of the polymer surface itself. In order to overcome these drawbacks,
a protection strategy using hydrotalcite-like compounds (layered double hydroxides, LDH) has been
developed [112] to immobilize the amino acids and using them as fillers to impart UV resistance to the
polymer matrix [111]. In addition, bio-based polymers and bio-films obtained also from legume seed
proteins were produced to be applied as packaging materials and composites. The most studied of
these polymers is sourced from the soybean, but films derived from pea proteins showed interesting UV
light transmission resistance due to the presence of aromatic amino acids [113]. Given the presence of
high amino acid levels in extracted legume agro-waste, it is therefore possible to hypothesize a possible
extension of aforementioned applications to protein extracts coming from legume processing residues.

Furthermore, an interesting and recent application in the packaging field is the development of
a new type of bioplastic based on chickpea aquafaba [85] that shows great potential for mechanical
manufacturing and thus industrial production being completely biodegradable and also vegan-friendly.

Finally, a 100% recyclable packaging paper was obtained from bean processing waste by an
eco-sustainable process and certified for application in direct contact with food [73].

This type of paper was estimated to reduce the use of virgin cellulose from trees by 15% and the
emission of greenhouse gases by 20%.

5.5. Other Uses

Recently, chickpea husk was used to extract textile grade dye that is able to impart color to
cotton, silk and wool fabrics as well as to give functional finishing features of textiles by using a
totally eco-friendly process [81]. Treated fabrics showed a good dye uptake and adequate wash, light
and rubbing fastness properties, in addition to a good ultraviolet protection property and excellent
resistance against Staphylococcus aureus and Escherichia coli bacteria.

Legume waste was also used in the composting field. Bean dregs (at 0%, 35% and 45%) were
evaluated as additives during the two-stage composting of green waste, improving process conditions
and compost quality [74].

Other applications are reported in Table 2.
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6. Conclusions

Legume residues, such as pea, bean and chickpea by-products/wastes, have a high and proven
potential in boosting new and diversified market opportunities in several industrial sectors. In
particular, the feed and food industries could find in legume residues a valuable source of bioactive
and highly nutritional ingredients (e.g., proteins and fibers) that may be obtained by means of green
extraction processes from sustainable natural resources. Moreover, the emerging packaging sector is
steadily seeking vegetal feedstocks to produce new bio-based materials with improved technical and
mechanical features for a wide array of applications, aiming at a progressive reduction of the use of
petrol-based polymers and of the cost of the final materials.

The efficient utilisation of the all agro-industrial residues can, therefore, help in reducing the
overall economic and environmental impact of the agro-industrial and food processing pipelines. The
residues extraction and following exploitation must, therefore, be carried out with low environmental
impact and green technologies, which will lead to achieving, hopefully in the near future, a zero-waste
economy and a more sustainable bio-based and circular society.
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